Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration
نویسندگان
چکیده
We review a selection of methods for performing enhanced sampling in 1 molecular dynamics simulations. We consider methods based on collective variable biasing 2 and on tempering, and offer both historical and contemporary perspectives. In collective3 variable biasing, we first discuss methods stemming from thermodynamic integration that 4 use mean force biasing, including the adaptive biasing force algorithm and temperature 5 acceleration. We then turn to methods that use bias potentials, including umbrella sampling 6 and metadynamics. We next consider parallel tempering and replica-exchange methods. We 7 conclude with a brief presentation of some combination methods. 8
منابع مشابه
Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics.
Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force mole...
متن کاملCorrection to Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-te...
متن کاملMolecular Dynamics Simulations using Temperature Enhanced Essential dynamics Replica EXchange (TEE-REX)
Todays standard molecular dynamics (MD) simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large numbe...
متن کاملORAC: A molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level
We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanc...
متن کاملMolecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.
Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014